Determination of Interlayer Structural Properties for Use in Laminated Glass Design

Overview

Authors

Photo of Michael Härth, Dipl.-Ing. (FH), M.Sc., Dr.-Ing.

Michael Härth, Dipl.-Ing. (FH), M.Sc., Dr.-Ing.

Research Scientist

Kuraray

michael.haerth@kuraray.com

Photo of Stephen J Bennison, B.Sc., M.S., Ph.D.

Stephen J Bennison, B.Sc., M.S., Ph.D.

Research Fellow

Kuraray

stephen.bennison@kuraray.com

Photo of Steven R Sauerbrunn, B.Sc., Ph.D.

Steven R Sauerbrunn, B.Sc., Ph.D.

Thermal Analysis Engineer

University of Delaware

sauerbru@udel.edu


Keywords


Abstract

We have seen rapid expansion in the last decade of laminated glass design using modern analytical and computational methods. Essential to the proper simulation of laminated glass behavior is the development of accurate constitutive models for the polymer interlayer. Such models should reflect polymer behavior as a function of temperature and load duration so calculations may be made that reflect the design load case of interest. In this contribution we present several approaches to the determination of interlayer shear relaxation modulus behavior. Results from test methods based on dynamic mechanical analysis (shear, parallel plate geometry) are compared and contrasted. We focus on several key issues: 1) proper sample conditioning and preparation, 2) minimization of sample deformation during testing, 3) methods for TTS analysis and accurate extraction of the shear relaxation modulus, G(t), 4) validation of results using beam bending experiments. We show that self-consistent results for a specific class of interlayer may be obtained from different test geometries provided these issues are carefully managed.

Introduction

Many computational tools and approaches are now available to model the deformation of laminated glass [1-7]. Indeed the development of such tools has played a key role in the expanded

Members Only

Experimental Section

Materials

In order to cover a wide range of various interlayer product stiffness, three commercial PVB interlayers, Trosifol® SC Monolayer, Trosifol® UltraClear and Trosifol® Extra Stiff, were investigated in this study

Members Only

Results and Discussion

Comparison of Different Methods and Laboratories

Figure 1 gives an example of measurement comparisons for Trosifol® Extra Stiff from two different DMA geometries, shear and parallel plate, and two different laboratories

Members Only

Conclusion

We have shown that reliable, self-consistent shear relaxation modulus, G(t), properties of polymers for laminated glass may be measured providing several important guidelines are followed. The results have also been

Members Only

Acknowledgements

The authors thank Dr. Michael Kraus (Bundeswehr University Munich) for performing the 4-point bend tests and for fruitful discussions.

Rights and Permissions

1. J. A. Hooper, “On the bending of architectural laminated glass,” Int. J. Mech. Sci., vol.15, pp.309–23, (1973).

2. I. Calderone, P. S. Davies, S. J. Bennison, H. Xiaokun and L. Gang “Effective Laminate Thickness for the Design of Laminated Glass,” presented at Glass Performance Days, Tampere, Finland, (2009).

3. L. Galuppi and G. Royer-Carfagni, “Effective Thickness of Laminated Glass Beams. New expression via a Variational Approach,” Eng. Struct., vol.38, pp.53-67, (2011).

4. L. Galuppi and G. Royer-Carfagni, “The effective thickness of laminated glass plates,” J. Mech. Mat. Struct, vol.7, pp.375-400, (2012).

5. L. Galuppi and G. Royer-Carfagni, “Practical expressions for the design of laminated glass,” Compos. Part B - Eng., vol.45, pp.1677-1688, (2013).

6. Bennison, S.J., Jagota, A. & Smith, C.A., (1999) “Fracture of Glass/Polyvinyl Butyral (Butacite®) Laminates in Biaxial Failure,” J. Am. Ceram. Soc., 82[7] 1761-70.

7. Van Duser, A., Jagota, A., Bennison, S.J. (1999) “Analysis of Glass/Polyvinyl Butyral (Butacite) Laminates Subjected to Uniform Pressure” Journal of Engineering Mechanics, ASCE, 125[4] 435-42.

8. Kuntsche J., Schuster M., Schneider J., and Langer S., “Viscoelastic Properties of Laminated Glass Interlayers – Theory and Experiments,” Glass Performance Days 2015, pp 143-147.

9. Zhang P., Stevels W., Haldeman S.V., Schimmelpenningh J.C., “Shear Modulus Measurements of Structural PVB Interlayer and prEN 16613,” Glass Performance Days 2015, pp 148-52.

10. Shitanoki Y., Bennison S.J. and Koike Y., “A practical, nondestructive method to determine the shear relaxation modulus behavior of polymeric interlayers for laminated glass,” Polymer Testing 37 (2014) 59–67.

11. Baumgärtel M, Winter HH (1989). “Determination of the discrete relaxation and retardation time spectra from dynamic mechanical data.” Rheol Acta 28:511519.