Parametric Facade Design

Glazing Optimization for Energy Demand Reduction

Overview

Abstract

Parametric Design has become an invaluable tool for complex tasks like designing energy efficient buildings when joined to performance-based methodologies. Parameterization allows the integration of envelope, shape and performance variables in one single and transparent process. We apply this framework to design an office/housing building in the metropolitan area of Buenos Aires (MABA). As envelope composition plays an important role in the energy demand of a building, the scope of this research is to design and test building shapes in the early stages of the design process to achieve energy savings

The performance based methodology combines a 3D environment (Rhinoceros), a parametric plug-in (Grasshopper), and a genetic algorithm (Galapagos) to obtain the optimized morphological alternatives. We sum hourly thermal gains and losses through the envelope to obtain heating and cooling demand indexes for typical winter and summer days utilizing sol-air temperature. First, we optimize the building massing, minimizing the cooling index, with a fixed window to wall ratio to obtain eighteen building morphologies.

Then, while keeping fixed the building morphologies and the cooling index, we optimize the window-to-wall ratio with the genetic solver to obtain another eighteen alternatives. These new alternatives provide designers with more facade options to explore.

As the model utilizes sol-air temperature, we can analyze the incidence of solar gains through the envelope hour by hour. This methodology allows designers to explore the relation between solar gains and envelope properties such as facade color and texture to improve energy performance from a bioclimatic perspective.


Authors

Photo of Patricia E. Camporeale

Patricia E. Camporeale

Posdoc Researcher

National University of La Plata

pcamporeale@fau.unlp.edu.ar

Photo of María del Pilar Mercader Moyano

María del Pilar Mercader Moyano

University of Seville - National University of La Plata

pmm@us.es


Keywords

Introduction

As cities’ greenhouse gas (GHG) emissions rise because of the increasing energy demand from a growing urban population, energy efficiency in buildings has emerged as an unavoidable issue since buildings

Access Restricted

Members get unlimited access to all of our resources. Join now for the best value.

Brief Literature Review

New technologies join architectural design with energy performance. We can find many examples of performance-based digital tools to integrate these two issues, which have become necessary for complex tasks like

Access Restricted

Members get unlimited access to all of our resources. Join now for the best value.

Research Objectives and Methods

The main objective of this work is to provide a methodology to obtain energy efficient building shapes, optimizing orientation and glazing by a 2-step process in the early stages of

Access Restricted

Members get unlimited access to all of our resources. Join now for the best value.

The Case Study

The Building Localization, Climate and Uses

We propose a multipurpose high-rise building (offices, housing and mixed-use) in three masses of different useful area joined together: 3000 sqm housing in 1

Access Restricted

Members get unlimited access to all of our resources. Join now for the best value.

Results

In the first optimization, we selected eighteen shapes, which are shown in Fig. 5: 1E to 18E. This methodology delivers a great variety of mass assemblages, with good energy efficiency

Access Restricted

Members get unlimited access to all of our resources. Join now for the best value.

Energy Plus Model Validation

We proceed to validate DCOOL and DHEAT, calculating Energy Plus heating and cooling demands, by means of the Grashopper plug-in: DIVA (Jakubiec, A. & Reinhardt, C., 2011). We choose alternatives

Access Restricted

Members get unlimited access to all of our resources. Join now for the best value.

Conclusion

Climate Change mitigation goals are sharpening design strategies as regulatory pressures and environment social concerns increase. Therefore, our objective is to test a multi-objective optimization method to help designers deliver

Access Restricted

Members get unlimited access to all of our resources. Join now for the best value.

Rights and Permissions

A. Payne, & R. Issa. (2009). The Grasshopper Primer (2nd edition). USA: Lift Architects. Retrieved from https://static1.squarespace.com/static/51c6f9f3e4b0e47ad1bbc71c/t/521cf940e4b021571fc7d3a5/1377630528615/Grasshopper+Primer_Second+Edition_090323.pdf

Albatici, R., & Passerini, F. (2011). Bioclimatic design of buildings considering heating requirements in Italian climatic conditions. A simplified approach. Building and Environment, 46(8), 1624–1631. https://doi.org/10.1016/j.buildenv.2011.01.028

Attia, S., Hensen, J. L. M., Beltrán, L., & Herde, A. D. (2012). Selection criteria for building performance simulation tools: contrasting architects’ and engineers’ needs. Journal of Building Performance Simulation, 5(3), 155–169. https://doi.org/10.1080/19401493.2010.549573

Calcerano, F., & Martinelli, L. (2016). Numerical optimisation through dynamic simulation of the position of trees around a stand-alone building to reduce cooling energy consumption. Energy and Buildings, 112, 234–243. https://doi.org/10.1016/j.enbuild.2015.12.023

Caldas, L. (2008). Generation of energy-efficient architecture solutions applying GENE_ARCH: An evolution-based generative design system. Advanced Engineering Informatics, 22(1), 59–70. https://doi.org/10.1016/j.aei.2007.08.012

Camporeale, P., & Czajkowski, J. (2016). Environmental index of energy demand in buildings. Optimization of a parametric model. International Journal of Civil and Structural Engineering, Volume 3(Issue 2), 82–87. https://doi.org/10.15224/978-1-63248-093-4-17

Camporeale, P. E., Mercader Moyano, M. del P., & Czajkowski, J. D. (2017). Multi-objective optimisation model: A housing block retrofit in Seville. Energy and Buildings, 153, 476–484. https://doi.org/10.1016/j.enbuild.2017.08.023

Depecker, P., Menezo, C., Virgone, J., & Lepers, S. (2001). Design of buildings shape and energetic consumption. Building and Environment, 36(5), 627–635. https://doi.org/10.1016/S0360-1323(00)00044-5

Gobierno de la Ciudad Autónoma de Buenos Aires. (2013). Ley 4458 Normas de Acondicionamiento térmico en la construcción de edificios. In Boletín Oficial 4142. Buenos AIres. Retrieved from http://boletinoficial.buenosaires.gob.ar/documentos/boletines/2013/04/20130430.pdf

Gobierno de la Provincia de Buenos Aires. (2010, July 2). LAW 13059 and Reglamentary Decreet 1030/10. Condiciones de Acondicionamiento Térmico exigibles en la construcción de edificios- Buenos Aires Province. Gobierno de la Provincia de Buenos AIres. Retrieved from http://www.gob.gba.gov.ar/legislacion/legislacion/10-1030.html

Gonzalo, G. E., & Nota, V. M. (2003). Manual de arquitectura bioclimática.

Granadeiro, V., Correia, J. R., Leal, V. M. S., & Duarte, J. P. (2013). Envelope-related energy demand: A design indicator of energy performance for residential buildings in early design stages. Energy and Buildings, 61, 215–223. https://doi.org/10.1016/j.enbuild.2013.02.018

Holland, J. (2001). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. Cambridge, Mass., [etc.: MIT Press.

IEA. (2013). Transition to Sustainable Buildings: Strategies and Opportunities to 2050. Paris.

IRAM. (1996). IRAM STANDARD 11605 Acondicionamiento Térmico de Edificios- Condiciones de habitabilidad en edificios- Buenos Aires. Buenos AIres.

IRAM. (2004). IRAM 11659-1 Esquema 2. Aislamiento térmico de edificios. Verificación de sus condiciones higrotérmicas. Ahorro de energía en refrigeración. Parte 1: vocabulario, definiciones, tablas y datos para determinar la carga la carga térmica de refrigeración. Argentine Normalisation and Certification Institute.

IRAM. (2007). IRAM 11659-2. Proyecto 1 de Norma Argentina. Acondicionamiento térmico de edificio. Verificación de sus condiciones higrotérmicas. Ahorro de energía en refrigeración. Parte 2: Edificios para vivienda. Argentine Normalisation and Certification Institute.

IRAM. (2012). IRAM 11603. Acondicionamiento térmico de edificios. Clasificación bioambiental de la República Argentina (Buenos Aires). Argentine Normalisation and Certification Institute.

Jakubiec, A., & Reinhardt, C. (2011). DIVA 2.0: Integrating daylight and thermal simulations using Rhinoceros 3D, DAYSIM and EnergyPlus. In Proceedings of the 12th Conference of International Building Performance Simulation Association (pp. 2002–2009). Sydney.

K. Lagios, J. Niemasz, & C. Reinhardt. (2010). Animated Building Performance Simulation (ABPS). Linking Rhinoceros/Grasshopper with Radiance/DaySim. In Proceedings of the Fourth International Conference of IBPSA. New York.

Laura Serra. (2017, February 2). El Gobierno prevé un recorte de $ 77.000 millones en subsidios - 02.02.2017 - LA NACION. Retrieved April 8, 2017, from http://www.lanacion.com.ar/1980971-el-gobierno-preve-un-recorte-de-77000-millones-en-subsidios

Lin, E., & Gerber, D. (2013). Designing Designing-In Performance: A case study of a net zero energy school design. In PLEA Proceedings 2013. Munich.

Ministerio de Economía de la República Argentina. (2014). BEN 2013 NATIONAL ENERGY BALANCE. Retrieved from http://www.energia.gov.ar/contenidos/verpagina.php?idpagina=3366-

Murray, S. N., Walsh, B. P., Kelliher, D., & O’Sullivan, D. T. J. (2014). Multi-variable optimization of thermal energy efficiency retrofitting of buildings using static modelling and genetic algorithms – A case study. Building and Environment, 75, 98–107. https://doi.org/10.1016/j.buildenv.2014.01.011

Negendahl, K., & Nielsen, T. R. (2015). Building energy optimization in the early design stages: A simplified method. Energy and Buildings, 105, 88–99. https://doi.org/10.1016/j.enbuild.2015.06.087

Nembrini, J., Samberger, S., & Labelle, G. (2014). Parametric scripting for early design performance simulation. ENB Energy & Buildings: Part C, 68, 786–798.

Nguyen, A.-T., Reiter, S., & Rigo, P. (2014). A review on simulation-based optimization methods applied to building performance analysis. Applied Energy, 113, 1043–1058. https://doi.org/10.1016/j.apenergy.2013.08.061

P. Cook. (2013). Rhinoceros v5.0, Level 1, Training Manual. Seattle: Robert McNeel & Associates.

Rutten, D. (2013). Galapagos: On the Logic and Limitations of Generic Solvers. Architectural Design, 83(2), 132–135. https://doi.org/10.1002/ad.1568

S. Bambardekar, & U. Poerschke. (2009). The architect as performer of energy simulation in the early design stage. In Proceedings of the 11th international IBPSA Conference (pp. 1306–1313). Glasgow: IBPSA. Retrieved from http://www.ibpsa.org/proceedings/BS2009/BS09_1306_1313.pdf

Shi, X., & Yang, W. (2013). Performance-driven architectural design and optimization technique from a perspective of architects. Automation in Construction, 32, 125–135. https://doi.org/10.1016/j.autcon.2013.01.015

Swiss Federal Office of Energy. (2017). Suisse Éole. The Swiss Wind Power Data Website. Retrieved April 2, 2017, from http://wind-data.ch/tools/profile.php

Taleb, H., & Musleh, M. A. (2015). Applying urban parametric design optimisation processes to a hot climate: Case study of the UAE. Sustainable Cities and Society, 14, 236–253. https://doi.org/10.1016/j.scs.2014.09.001

US Department of Energy. (2015). Building Technologies Office: EnergyPlus Energy Simulation Software. Retrieved March 21, 2017, from http://apps1.eere.energy.gov/buildings/energyplus/