Innovations with Glass

Overview

Abstract

Glass has become a popular building material that is used not only for windows but also as a load-bearing material. New dimensions of glass panes in all directions, in the dimensions length and width and in the thickness directions (thicker and thinner) are available on the market. New functions can be integrated into the glass panes. There are innovative vacuum insulating glass panes, for example, which fulfill high insulating properties with low component thicknesses. With switchable glass interlayers, further new functions can be linked to the glass, from shading to information display and interaction with humans.

The new dimensions and functions make innovative structures possible, but it also requires new knowledge in dimensioning. In order to test the strength of thin glass, a reproducible test method was still missing. The TU Darmstadt has designed a testing machine that can test thin glass reproducibly. In order to be able to better assess the strength of architectural glass and to be able to carry out the design more economically, it is worth taking a look at the edge strength of glass. The post-fracture behaviour is also a special task in glass construction. The prediction of the fracture pattern and the fragment size plays an important role.

This article deals with new dimensions in building with glass using the currently available geometric sizes of glass (dimensions, thin glass, thick glass), new functionalities through lamination, vacuum insulating glass, and the integration of switchable layers. Results of current research work related to thin glass, edge stress and fragmentation of thermally tempered glass at the TU Darmstadt are presented.


Authors

Photo of Jens Schneider

Jens Schneider

Institute of Structural Mechanics and Design, Glass Competence Center

schneider@ismd.tu-darmstadt.de

S. Müller-Braun

Institute of Structural Mechanics and Design, Glass Competence Center

T. Peters

Institute of Structural Mechanics and Design, Glass Competence Center

M. Schuster

Institute of Structural Mechanics and Design, Glass Competence Center

1. Introduction

Glass as a building material has become as established as traditional building materials such as concrete, steel or timber. Architects and engineers use it to design, dimension, construct and execute

Access Restricted

Members get unlimited access to all of our resources. Join now for the best value.

2. New dimensions of architectural glass

2.1 Pane size – mega-sized flat glass panes

The dimensions of flat glass panes available on the market have substantially increased. Whereas earlier an available size of 3.21 m x

Access Restricted

Members get unlimited access to all of our resources. Join now for the best value.

3. New functionalities

3.1 Hybrid vacuum insulation glass

The current standard for heat protection glazing in architecture is triple glazing (EnEV, 2014; Feist, 2007). However, the use of triple glazing also has disadvantages: significantly

Access Restricted

Members get unlimited access to all of our resources. Join now for the best value.

4. News related to calculation, simulation and research in building with glass

4.1 Mechanical test method for thin glass

The biggest problem in testing the strength of thin glass and the resulting tension stress is the non-linearity stemming from the large deformations. When

Access Restricted

Members get unlimited access to all of our resources. Join now for the best value.

5. Conclusion and Future Work

Building with glass evolved from a simple material for windows and cladding to a high-tech product with many fields of applications in the construction industry. Glass is not only the

Access Restricted

Members get unlimited access to all of our resources. Join now for the best value.

Rights and Permissions

DIN 18516-4 (1990): Außenwandbekleidung, hinterlüftet – Einscheiben-Sicherheitsglas – Anforderungen, Bemessung, Prüfung

TRAV (2003): Technische Regeln für die Verwendung von absturzsichernden Verglasungen, Deutsches Institut für Bautechnik (DIBt), Fassung Januar 2003

TRPV (2006): Technische Regeln für die Bemessung und Ausführung punktförmig gelagerter Verglasungen, Deutsches Institut für Bautechnik (DIBt), Schlussfassung August 2006

TRLV (2006): Technische Regeln für die Verwendung von linienförmig gelagerten Verglasungen, Deutsches Institut für Bautechnik (DIBt), Schlussfassung August 2006

DIN 18008-1 (2010): Glas im Bauwesen – Bemessungs- und Konstruktionsregeln – Teil 1: Begriffe und allgemeine Grundlagen

DIN 18008-2 (2010): Glas im Bauwesen – Bemessungs- und Konstruktionsregeln – Teil 2: Linienförmig gelagerte Verglasungen (mit Berichtigung 1 vom April 2011)

DIN 18008-3 (2013): Glas im Bauwesen – Bemessungs- und Konstruktionsregeln – Teil 3: Punktförmig gelagerte Verglasungen

DIN 18008-4 (2013): Glas im Bauwesen – Bemessungs- und Konstruktionsregeln – Teil 4: Zusatzanforderungen an absturzsichernde Verglasungen

DIN 18008-5 (2013): Glas im Bauwesen – Bemessungs- und Konstruktionsregeln – Teil 5: Zusatzanforderungen an begehbare Verglasungen

DIN 18008-6 (2015): Glas im Bauwesen – Bemessungs- und Konstruktionsregeln – Teil 6: Zusatzanforderungen an zu Instandhaltungsmaßnahmen betretbare Verglasungen und und an durchsturzsichere Verglasungen – Entwurf

prCEN/TS xxxx-1:2018 Structural glass — Design and construction rules — Part 1: Basis of design and materials, January 2018

prCEN/TS xxxx-2:2018 Structural glass — Design and construction rules — Part 2: Out-of-plane loaded glass components, January 2018

prCEN/TS xxxx-2:2018 Structural glass — Design and construction rules — Part 3: Design of in-plane loaded glass elements and their mechanical joints, January 2018

Allgemeine bauaufsichtliche Zulassung Z-10.4-674: Wandelement iconic skin GlasSandwich Panel (GSP), Typ GSP-PUR, 20.02.2018

EOTA, ETAG 002: Guideline for European Technical Approval for Structural Sealant Glazing Kits (SSGK), May 2012

Drass, M., Schneider, J., & Kolling, S. “Damage Effects of Adhesives in Modern Glass Facades: A Micro-Mechanically Motivated Volumetric Damage Model for Poro-Hyperelastic Materials” International Journal of Mechanics and Materials in Design (2017): 1-26

Rosendahl, P.L., Drass, M., Felger, J., Schneider, J., Becker, W. “Equivalent strain failure criterion for multiaxially loaded incompressible hyperelastic elastomers” International Journal of Solids and Structures (2018) Under review.

Jotz, M., Prenzel, W.-D. Ultradünnes Glas. In W.-D. Prenzel, (ed.) Jahrbuch für Optik und Feinmechanik, Görlitz: Optik-Verlag (2017): 175-186

Schober, H., Schneider, J., Justiz, S., Gugeler, J., Paech, C., Balz, M. “Innovations with glass, steel and cables.” In: Glass Performance Days, Tampere, Finland (2007): 198-201

Oikonomopoulou, F., Veer, F.A., Nijsse, R., Baardolf, K. “A completely transparent, adhesively bonded soda-lime glass block masonry system.” Journal of Facade Design and Engineering (2015) Vol. 2 (3-4): 201-221

EnEV 2014: EnEV 2009 geändert durch die „Verordnung zur Änderung der Energieeinsparverordnung“ vom 18. November 2013, verkündet im Bundesgesetzblatt, Bundesanzeiger Verlag, Köln, Jahrgang 2013, Teil I, Nr. 67, Seite 3951 bis 3990, am 21. November 2013. Tritt in Kraft ab 1. Mai 2014. www.bundesgesetzblatt.de

Feist, W. “Passivhausfenster – höchste Qualität bei transparenten Bauteilen“, https://passiv.de/former_conferences/Passivhaus_D/PassivhausFenster_06.htm, 19.08.2007

Kocer, C. “The thermal and mechanical performance of a vacuum insulating Glazing.” In: Proceedings Glass Performance Days 2015, Tampere (2015): 7–10

Allgemeine bauaufsichtliche Zulassung Z-70.4-245: Sage Glass Vetrotech Saint-Gobainaccessed on 20. 06. 2018, www.sageglass.com

Haase, W., Husser, M., Sobek, W. “Potentiale strukturierter, schaltbarer Verglasungen.” Glasbau (2016): 293 – 306

Chen, R. H. Liquid crystal displays: Fundamental physics and technology. New York, 2011.

Merck KGaA: Performance Materials - display Materials: Liquid-Crystal-Window–Technologie, http://www.merck-performance-materials.com

DIN 18008-1: Glas im Bauwesen — Bemessungs- und Konstruktionsregeln — Teil 1: Begriffe und allgemeine Grundlagen, Entwurf (2018)

Schneider, J., Kuntsche, J., Schula, S., Schneider, F., Wörner, J.-D. Glasbau -Grundlagen, Berechnung, Konstruktion. 2. Auflage, Springer, 2016.

Heiss-Chouquet, M., Nattermann, K., Ottermann, C., Jotz, M. U.S. Patent No. 9,784,655. Washington, DC: U.S. Patent and Trademark Office (2017)

DIN 1249-11: Flachglas im Bauwesen − Glaskanten, Begriffe, Kantenformen und Ausführung, September 1989

Kleuderlein, J., Ensslen, F., Schneider, J. “Untersuchung zur Kantenfestigkeit von Floatglas in Abhängigkeit der Kantenbearbeitung.” Glasbau (2016)

DIN EN 1288-3: Bestimmung der Biegefestigkeit von Glas − Teil 3: Prüfung von Proben bei zweiseitiger Auflagerung (Vierschneiden-Verfahren), September 2000

Ensslen, F., Müller-Braun, S. “Kantenfestigkeit von Floatglas in Abhängigkeit von wesentlichen Schneidprozessparametern.” Glasbau (2017)

Müller-Braun, S., Seel, M., König, M. et al. “Cut edge of annealed float glass: crack system and possibilities to increase the edge strength by adjusting the cutting process”, Glass Struct Eng (2019). https://doi.org/10.1007/s40940-019-00108-3

Müller-Braun, S.; Franz, J.; Schneider, J.; Schneider, F.: “Optische Merkmale der Glaskante nach Glaszuschnitt mit Schneidrädchen”, Glasbau 2018, Ernst & Sohn, S. 99-111, 2018

Schula, S. Charakterisierung der Kratzanfälligkeit von Gläsern im Bauwesen, Dissertation, TU Darmstadt (2015)

DIN EN 12150-1 Glas im Bauwesen - Thermisch vorgespanntes Kalknatron- Einscheibensicherheitsglas - Teil 1: Definition und Beschreibung, November 2000

Akeyoshi, K., Kanai, E. “Mechanical Properties of Tempered Glass.” VII int. congr. on glass, Nr. paper 80 (1965)

Barsom, J. M. “Fracture of Tempered Glass.” J. Am. Ceram. Soc., Vol. 51, nr. 2 (1968): 75–78

Lee, H. Cho, S., Yoon, K., Lee, J. “Glass Thickness and Fragmentation Behavior in Stressed Glasses.” New J. Glas. Ceram., Vol. 2 (2012): 138–143

Pourmoghaddam, N., Schneider J. “Experimental investigation into the fragment size of tempered glass.” Glas. Struct. Eng., Vol. 3, nr. 2 (2018): 167–181

Nielsen, J.H. Olesen, J. F., Stang, H. “The fracture process of tempered soda-lime-silica glass.” Exp. Mech., Vol. 49, nr. 6 (2009): 855–870

Pourmoghaddam, N., Nielsen, J. H. Schneider, J. “Numerical simulation of residual stresses at holes near edges and corners in tempered glass: A parametric study.” Proccedings Engineered Transparency International Conference At Glasstec (2016)

Pourmoghaddam N., Schneider, J. “Finite-element analysis of the residual stresses in tempered glass plates with holes or cut-outs.” Glas. Struct. Eng., Vol. 3, nr. 1 (2018): 17–37